Claude Code Skills Integration¶
This guide explains how to integrate clinvk with Claude Code Skills to extend Claude's capabilities with multi-backend AI support.
Why Use clinvk in Skills?¶
Claude Code Skills extend Claude's capabilities, but sometimes you need:
- Other AI Backends: Gemini excels at data analysis, Codex at code generation
- Multi-Model Collaboration: Complex tasks benefit from multiple perspectives
- Parallel Processing: Run multiple AI tasks concurrently
Prerequisites¶
- clinvk installed and in your PATH
- At least one backend CLI installed (
claude,codex, orgemini)
Basic Skill Example¶
Single Backend Call¶
Create a skill that uses Gemini for data analysis:
<!-- ~/.claude/skills/analyze-data/SKILL.md -->
# Data Analysis Skill
Analyzes data using Gemini CLI via clinvk.
## Usage
Run this skill when you need to analyze structured data.
## Script
!/bin/bash¶
DATA="$1"
clinvk -b gemini -o json --ephemeral "Analyze this data and provide insights: $DATA"
Using the Skill¶
In Claude Code, the skill can be invoked:
Multi-Model Review Skill¶
A more powerful skill that uses multiple backends for comprehensive code review:
<!-- ~/.claude/skills/multi-review/SKILL.md -->
# Multi-Model Code Review
Performs comprehensive code review using Claude (architecture),
Codex (performance), and Gemini (security).
## Usage
Provide a file path or code snippet for multi-perspective review.
## Script
!/bin/bash¶
CODE="$1"
echo "## Multi-Model Code Review Results" echo ""
echo "### Architecture Review (Claude)" clinvk -b claude --ephemeral "Review this code for architecture and design patterns: $CODE"
echo "" echo "### Performance Review (Codex)" clinvk -b codex --ephemeral "Review this code for performance issues and optimizations: $CODE"
echo "" echo "### Security Review (Gemini)" clinvk -b gemini --ephemeral "Review this code for security vulnerabilities: $CODE"
Parallel Review Skill¶
For faster multi-model review using parallel execution:
<!-- ~/.claude/skills/parallel-review/SKILL.md -->
# Parallel Multi-Model Review
Fast parallel code review using all backends simultaneously.
## Script
!/bin/bash¶
CODE="$1"
Create tasks file¶
cat > /tmp/review-tasks.json << EOF { "tasks": [ {"backend": "claude", "prompt": "Review for architecture and design: $CODE"}, {"backend": "codex", "prompt": "Review for performance issues: $CODE"}, {"backend": "gemini", "prompt": "Review for security vulnerabilities: $CODE"} ] } EOF
clinvk parallel -f /tmp/review-tasks.json --json | jq -r ' "## Architecture (Claude)\n" + .results[0].output + "\n\n" + "## Performance (Codex)\n" + .results[1].output + "\n\n" + "## Security (Gemini)\n" + .results[2].output '
Chain Execution Skill¶
A skill that pipelines output through multiple backends:
<!-- ~/.claude/skills/doc-pipeline/SKILL.md -->
# Documentation Pipeline
Generates polished documentation through a multi-step pipeline:
1. Claude analyzes code structure
2. Codex generates documentation
3. Gemini polishes and improves readability
## Script
!/bin/bash¶
CODE="$1"
Create pipeline file¶
cat > /tmp/doc-pipeline.json << EOF { "steps": [ { "name": "analyze", "backend": "claude", "prompt": "Analyze the structure and purpose of this code. List all functions, classes, and their relationships:\n$CODE" }, { "name": "document", "backend": "codex", "prompt": "Based on this analysis, generate comprehensive API documentation in Markdown format:\n{{previous}}" }, { "name": "polish", "backend": "gemini", "prompt": "Improve the readability and add helpful examples to this documentation:\n{{previous}}" } ] } EOF
clinvk chain -f /tmp/doc-pipeline.json --json | jq -r '.results[-1].output'
Advanced Patterns¶
Error Handling¶
#!/bin/bash
set -e
if ! OUTPUT=$(clinvk -b claude --ephemeral "$1" 2>&1); then
echo "Error executing clinvk: $OUTPUT"
exit 1
fi
echo "$OUTPUT"
Conditional Backend Selection¶
#!/bin/bash
TASK_TYPE="$1"
PROMPT="$2"
case "$TASK_TYPE" in
"analyze")
BACKEND="claude"
;;
"generate")
BACKEND="codex"
;;
"research")
BACKEND="gemini"
;;
*)
BACKEND="claude"
;;
esac
clinvk -b "$BACKEND" --ephemeral "$PROMPT"
Compare Backends¶
Best Practices¶
1. Use Ephemeral Mode¶
For stateless skill execution, always use --ephemeral:
2. Choose the Right Backend¶
| Task Type | Recommended Backend | Why |
|---|---|---|
| Code Review | Claude | Deep understanding, context |
| Code Generation | Codex | Optimized for code |
| Data Analysis | Gemini | Strong analytical capabilities |
| Documentation | Any | All perform well |
| Security Audit | Claude + Gemini | Different perspectives |
3. Use JSON Output for Parsing¶
When you need to process the output:
4. Format Output for Claude¶
Structure skill output for Claude to process:
Skill Directory Structure¶
~/.claude/skills/
├── analyze-data/
│ └── SKILL.md
├── multi-review/
│ └── SKILL.md
├── doc-pipeline/
│ └── SKILL.md
└── shared/
└── clinvk-helpers.sh # Shared functions
Troubleshooting¶
Backend Not Available¶
Check Version¶
Next Steps¶
- LangChain/LangGraph Integration - For Python-based agents
- CI/CD Integration - Automate in pipelines
- CLI Commands Reference - Complete CLI documentation